

Additive Manufacturing @ BW

Adding Layers of Flexibility to Design, Manufacturing, & Sourcing

Session Agenda

- Updates Making the complex simple
- Tools & Support to simplifying and drive adoption
- Additive Manufacturing's Impact @ BW
 - Enabling Quick-Turnaround in Converting
 - SpeedLinerX Product Development at Papersystems
 - High Value Applications at BWFS
- Simplifying Adoption with relevant examples

arry-Wehmiller. All rights reserved. Internal use on

Quick Updates

- New Team Members supporting
 - Elisa Jara in Stuttgart

- Progressing with our Strategic Vision
 - Two Global Additive Manufacturing Centers (AMC's) now open
 - AMC-Stuttgart & AMC-Clearwater
- Support Available to help with implementation
 - Hands-on Training, Workshops, Site Visits, and more
- Printing production parts across the enterprise
 - Get started now to save time & cost, simplify sourcing, and enhance designs!

arry-Wehmiller. All rights reserved. Internal use o

WHY use the AMC's?

Internal AMC utilization is vital to our success in AM

- Provides expertise & experience
- Standards Quality Reduced Variability
- Industrial Capabilities + Capacity (scale)

Why use the AMC now?

- High utilization = lowest possible cost
- Consistent material, process, and design standards
- Centers in both EMEA and NA enables consistent global production

About more than just cost savings \rightarrow provides responsive manufacturing and ensures stable / resilient supply

HOW to implement AM?

Knowledge Building (Training)

Hands-on Experience (Prototyping)

Production & Support @ AMC's

HOW? → Training & Support Options

Virtual or In-Person Training Walk the Floor Visits

Hands-On Workshops

Design Reviews

Simplifying Adoption

- Why?
- → Benefits
- Where?
 - → Examples

- How?
- → Tools & Support

Where & Why – AM Across BW

WHERE, WHEN, WHY to use AM?

Real world BW examples illustrating Applications, Processes, and Value

On-site printers

Revolutionizing Product Development with 3D Printing: Achieving Quick Turnarounds

BW Converting: John Bessey, Parker Will

Better by Design

Introduction

Vertis Rotary Interfolder

- Produce tear-resistant wet wipes from biodegradable materials
- Multiple unknowns requiring innovative solutions and rapid iterations
 - Vacuum system
 - Prefold rolls
 - Knife rolls
 - Stacking and separating
 - Gripping and tucking

Quick Turn Story

- Run machine to identify issues
- Learn from performance data
- Redesign components to address problems
- Print new parts using 3D technology
- Install components for testing
- Re-Run machine again to validate improvements

Run and Learn - Quick Turn Story

- Original part analysis revealed design limitations
- Identified specific issues to address:
 - Inconsistent web handling during operation
 - Excessive component wear reducing lifespan/indicating interferences
 - Vacuum efficiency problems affecting product handling

Redesign - Quick Turn Story

- Innovation through Incremental Design
 - Simulation only takes you so far for Non-Woven substrate
 - Enhanced vacuum channel geometry
 - Larger vacuum chamber
 - Modified hole spacing
 - Larger vacuum hole diameter
 - Variable vacuum hole diameter

Many design iterations are needed

3D Print Learnings - Quick Turn Story

- Developed a Local Community of Practice
 - Printer and slicer capabilities
 - Print best practices
 - Materials, # of walls, infill type, infill %, support, types of support
 - Learn advanced features
 - Printer Operation/Collaboration Tracking Sheet
 - Print Failure Modes and Recovery
- Build Teamwork
 - Rally around a cause

4	Α	В	С	D	Е	F	G F	1	J	K	L	M	N	O	P	Z	AA	AB	AC	AD	AE	AF	AG		
					Quantity	Total	Total	Print Progress Tracking						Drint Cottings											
1	Part Number	Priority	Owner	Printer	Needed	'l in Complete ■ P = Printing F = Finished X = Delivered ■						183													
2						Progress	& Delivered	1	2	3	4		6	7					Infill Pattern	Walls		Supports	Notes		
14	314/031/		John Bessey	Bessey PCIVIC Core One #1				X	Х	Λ	٨	^	Λ Ι	N/A	IN/A	PLA	0.1511111	10%	Recumear	2	INO	INO			
15	31476517		John Bessey	PCMC Core One #2				Х	Х	Х	Х	Х	Х	Х	X	PLA	0.15mm	10%	Rectilinear	2	No	No	Print Standing on End		
16	31476517.001.01	High	Eric Jensen	Home	30	30	30	Х	Х	Х	Х	Х	Х	Х	X	PLA	0.15mm	10%	Rectilinear	2	No	No	Need 30 complete parts, .001.01 & .001.02 are split halves. It does not matter which way the parts are		
17	31476517.001.02		Eric Jensen	Home				Х	Х	X	N/A N	I/A I	N/A	A/N	N/A	PLA	0.15mm	10%	Rectilinear	2	No	No	printed so long as the total is correct.		
18	31476517.001.02		John Bessey	PCMC Core One #1				Х	Х	Х	X N	I/A I	N/A	A/N	N/A	PLA	0.15mm	10%	Rectilinear	2	No	No			
19	31476517.001.02		Cory Schubring	Home				Х	Х	Х	Х	X I	N/A	A/N	N/A	PLA	0.15mm	10%	Rectilinear	2	No	No			
	31461911.3DP	Mid	John Bessey	PCMC XL	2	2	2	2	2	х	х	N/A I	N/A N	I/A I	N/A I	N/A	N/A	PLA	0.2mm	15%	Rectilinear	Standard	l No	No	Print with groove facing upward
20		,																					5-7 top surface layers (wear surface)		
	31461911.002.3DP	Mid	John Bessey	PCMC XL	2	2	2	v	l x	NI/A I	u/Λ Λ	1/A N	NI/A I	N/A N/	N/A	PLA	0.2mm	15%	Rectilinear	Standard	No	No	Print with groove facing upward		
21	31401311.002.3DF	iviiu	Joini Bessey	PCIVIC XL	2		- 2		2	^	^	IV/A	*/-A I	77	V/A	V/A	IV/A	FLA	0.2/1111	1370	Recuilled	Standard	NO	NO	5-7 top surface layers (wear surface)

3D Print Learnings - Quick Turn Story

- Install/run
 - Did we solve our problems

- Many design cycles
 - Performed daily design cycle iterations from November, '24 to April, '25
- Start with 3D Print prototyping right away.

Look Familiar?

Wehmiller. All rights reserved. Internal use only

Process Timeline Comparison

Week 1			Week 2						Week 3			Week 4								
	Monday	Tuesday	Wednesday	Thursday	Friday	Monday	Tuesday	Wednesday	Thursday	Friday			Wednesday			Monday		Wednesday		Friday
Additive Manufacturing		Slicing / Printing		Machine	Update 3D Model	Printing		Machine	3D Model	_	Printing	Test in Machine	Update 3D Model	Slicing / Printing	Printing	Test in Machine	Update 3D Model	Slicing / Printing	Printing	Test in Machine
Conventional Production		Quoting	Cut PO	Leadtime Day 1	Leadtime Day 2	Leadtime Day 3	Leadtime Day 4	Leadtime Day 5	Shipping / Receiving	Test in Machine	Update 3D	Quoting	Cut PO	Leadtime Day 1				Leadtime	Shipping /	Test in Machine

Additive Manufacturing:

- Quick iterations and part production
- Cuts out traditional bottle-necks
- Doesn't rely on outside resources (vendors, transportation, etc)

Conventional Production:

- Complex system with slow results
- Requires involvement from several departments and processes
- Subject to delays

25 Barry-Wehmiller, All rights reserved, Internal use only.

Process Cost Comparison

Additive Manufacturing:

- Cost of material (\$8)
- Cost of printer wear and tear (\$28)
- \$432 per iteration \$192 in material

Conventional Production:

- Cost of machined Acetal part (\$630)
- Cost of internal operations
- 30-day lead time
- \$15,120 per iteration

Process Impacts and Key Takeaways

- Validated in-house printing capabilities
- New 3D printers
 - Greatly increased part production and decreased testing down-time
- Exposed team members to additive manufacturing
- Facilitated mindset shifts regarding 3D printing in a test environment

WHERE, WHEN, WHY to use AM?

Real world BW examples illustrating Applications, Processes, and Value

5 Barry-Wehmiller. All rights reserved. Internal use o

3D printing @ SpeedLiner X

The next generation RFID converting machines for BWP Stuttgart feature an entirely new designed attaching module for the RFID inlays!

It is the key-component! Everything had to be invented from scratch!

Barry-Wehmiller. All rights reserved. Internal use only.

Fast iteration with 3D printing

Vacuum suction box for the attaching module of SpeedLiner X!

Initial idea:

- 3D printed
- Single piece design
- No leakage

Initial design/idea

Fast iteration with 3D printing

Fast iteration with 3D printing

2025 Barry-Wehmiller. All rights reserved. Internal use or

Fast iteration with 3D printing

2025 Barry-Wehmiller. All rights reserved. Internal use o

. All rights reserved. Internal use only.

3D printing @ SpeedLiner X

With the SpeedLiner X, we also redesigned the vacuum system completely!

How to switch on / off vacuum:

- Big hose diameter
- Fast
- Compact

Option 1

2½" BÜRKERT valve

≈ 350,-\$

(5,2 kg / 11,5 lbs)

Option 2

2½" MAC valve series 59

≈ 600,-\$

(6,3 kg / 14 lbs)

Option 3

2½" TAMESON pinch valve

≈ 1000,-\$

3D printed

Our solution: pneumatically operated "bathtub plug"

Almost no restriction to the airflow!

(pressure loss < 1 mbar / 0.014 psi)

Completely assembled in the machine

Creation of two housing parts

Printer hourly rate AMC: 6\$

Total print time: 12:30h

Material consumption: 400g

Part 1 6:30 h (\$)

Part 2 3:45 h (\$)

Part 3 2:15 h (\$\sqrt{}\$)

Part 1	39,-\$
Part 2	22,50 \$
Part3	13,50 \$
Cylinder	25,-\$
Assembly cost + small parts	50,-\$
Total	150,-\$

25 Barry-Wehmiller. All rights reserved. Internal use o

3D printing improves air distribution

Questec – ultra compact folio size sheeter with "Airstream technology"

3D printing improves air distribution

Barry-Wehmiller. All rights reserved. Internal use onl

3D printing improves air distribution

One of the airstream tables suffered from insufficient air supply!

Safe operation could not be guaranteed!

The team already looked for a bigger blower!

3D printing improves air distribution

We lost 62 % of our pressure on the "last mile" because of conventional welded air distribution channels and small hoses!

)25 Barry-Wehmiller. All rights reserved. Internal use only

3D printing improves air distribution

We replaced the welded parts on the "last mile" with 3D printed aerodynamically designed components!

- Designed on Friday
- Printed over the weekend
- Installed Monday morning
- First tests started Monday afternoon

1 piece \emptyset 106 mm \rightarrow 4x \emptyset 63 mm

4 pieces \emptyset 63 mm \rightarrow 4x \emptyset 25 mm

16 pieces Ø 25 mm

Part 3 purposefully designed in two pieces

No need for support easier / faster / cleaner

Total	638,-\$
Assembly cost + small parts	250,-\$
Hoses	100,-\$
Part3 (16pcs)	90\$
Part 2 (4pcs)	126\$
Part 1 (1pc)	72,-\$

3D printed ducting

Printer hourly rate AMC: 6\$

Total print time: 48h

Material consumption: 1610g

Part 1 (1pc) 12:00 h

Part 2 (4pcs) 21:00 h (\$\sqrt{\$}\$)

Part 3 (16pcs) 15:00 h (5)

3D printing improves air distribution

Airstream table: +90 mbar (+1.3 psi) ≈ 56 % (+80 mbar would have been needed!)

• Pressure loss was reduced by 38% (60 mbar)

Existing blower could be retained

• Speed of existing blower could even be reduced ;-)

Measuring point: +128 mbar (+1.88 psi)

≈ 80 %

3D printing improves air distribution

... and we started to transfer these learnings across BW Papersystems!

International Know How Exchange

We had the pleasure to welcome Jacob in Stuttgart!

He was working for 3 month with us!

Christian Berger

Elisa Jara

Jacob Strojny

Hansjörg Klein

Artur Konrad

Andi Schilling

Vacuum Overhead Stacker

Vacuum Overhead Stacker

ServoPro RDC Vacuum Infeed

≈ 450 kg (990 lbs)

025 Barry-Wehmiller. All rights reserved. Internal use only

ServoPro RDC Vacuum Infeed

Potential redesign idea:

- 3D printed parts
- standard hoses
- Improved aerodynamics
- No inventory
- Lower cost

)

AMC capable of larger FDM prints

Local printer

AMC

External vendor

WHERE, WHEN, WHY to use AM?

Real world BW examples illustrating Applications, Processes, and Value

External Provider for 'alternate' technology

Additive Manufacturing @ SYMACH BWFS-Terneuzen

arry-Wehmiller. All rights reserved. Internal use or

History and materials

- We use 3-D printed parts since 2018
- Started with small parts, easy to replace
- Last year: 180 unique part numbers -> Total 2.800 parts, Eur 39.500

Primary Materials:

- PA12
- TPU (flexible)
- PA12 Food Approved

Primary Reasons for using Additive Manufacturing:

- Time savings
- Cost savings
- Design for function and for specific application requirements

Examples with PA12

- Suction cup base in FillStar to open the bag at the spout
- Base for multiple cups not standard available
- Eur 74,02

Examples with PA12

- Toothed belt to synchronize centrating plates
- All fasteners to be mounted from below reduces assembly time

Allows design for function – nut holder in upper part / passing belt through left lower part. Provides the lowest-cost solution.

25 Barrv-Wehmiller. All rights reserved. Internal use

Integrated application in safety door

- Combined parts to assemble safety sensor reduced part count
- All separate parts are adjustable

Example of Combined Parts

• Self-closing hinge at platform door

Foil clamp in wrapping machine

Rack and pinion

Foil clamp in wrapping machine

• Air nozzles

Recap

- AM continues to show its value across the enterprise
 - Solve design challenges evaluate & iterate quicker than ever
 - Save time & money, free working capital, add supply chain resilience
- Let us Help

 Training & Support is available
 - The AM Team is ready and eager to help!
 - Virtual, in-person, hands-on a wide range of options
- The AM Centers exist to provide high quality at lowest cost
- Implementing AM has never been easier!

Thank You!